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Abstract  

The spread of infectious diseases can be analyzed dynamically using a discrete dynamic system. 
The characteristics of the infectious disease phenomenon are interesting to study as parameters 
considered in a dynamic system. Some of these include vaccination interventions, quarantine, or 
even an open condition such as limited medical resources. Analysis of a discrete epidemic model 
system with those three factors can be conducted to understand each of their impacts on the 
dynamics of disease spread within a population or even to determine the potential for a chaotic 
outbreak. In this study, an epidemiological model was formulated considering these three factors. 
Numerical simulations were also conducted to directly observe the influence of these three factors 
on the dynamics of disease spread. Additionally, efforts to control chaos were also implemented 
in the system. The limitation of medical resources affects the spread of diseases. Because the 
coverage of medical resources is limited, it can cause a high surge in cases within the population. 
This phenomenon of case surges can subsequently be mitigated by vaccination parameters such 
as vaccine efficacy and the rate of vaccine distribution within the population. Furthermore, the 
formulated system has the potential to exhibit chaotic behavior when the infection rate increases, 
in other words, the disease becomes an uncontrollable and unpredictable epidemic. Next, the thing 
that can be done to suppress this chaotic phenomenon is to directly intervene in the rate of disease 
spread within the population. 
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1. Introduction 

Discrete dynamic systems describe phenomena using discrete time, with the logistic map 
as a key example. In biology, these systems are applied to study mosquito control [1], 
predator-prey dynamics considering the Allee effect [2], [3], and disease spread [4], [5]. 
In economics, they help analyze macroeconomic dynamics and control strategies [6]. The 
analysis is often supported by theories such as bifurcation and chaos theory. 

Bifurcation in a dynamic system describes how the behavior of the system changes in 
response to a change in the parameters within the system. Many studies have examined 
bifurcation in discrete dynamical systems. Studies that have been extensively conducted 
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include the analysis of the existence of bifurcations in a discrete system, whether period-
doubling bifurcation or Neimark-Sacker bifurcation [4], [7], [8]. Additionally, bifurcation 
analysis can also be conducted to find the existence of common bifurcations in discrete 
systems such as transcritical, pitchfork, or saddle node [8], [9]. Furthermore, bifurcations 
that occur in a discrete system under certain scenarios can lead to chaotic behavior. The 
chaotic behavior of a discrete system can later be analyzed using chaos theory. 

Chaos theory explains systems that behave erratically. Previous studies have been 
extensively conducted to analyze whether the system has chaotic potential. The analysis 
of chaotic behavior in discrete systems is often conducted using the maximum Lyapunov 
exponent. Then, the chaotic behavior that emerges in discrete systems can also be 
controlled to stabilize the system [10], [11]. The study of chaos control in a discrete 
system can be applied to cases such as turbulence, weather forecasting, population 
dynamics, cardiology, chemical reactions, or others. In addition, studies on the analysis 
of discrete systems using chaos theory or bifurcation theory on discrete systems are also 
interesting to conduct in cases of disease spread. 

Numerous studies have explored the dynamic systems of disease spread, starting with the 
Kermack-McKendrick model for simple transmission. As our understanding of diseases 
has advanced, these analyses have been increasingly employed to evaluate intervention 
measures like vaccination and quarantine [12], [13]. They also help identify when herd 
immunity occurs in a population [14], [15] and examine the effects of individual mobility 
on disease transmission [16]. 

Covid-19 is still a current disease, as shown by updates on the WHO website about new 
positive cases. This disease began at the end of 2019 and became a global pandemic [17]. 
It is interesting to study Covid-19 using discrete dynamic systems. Many medical and 
non-medical strategies have been used to control its spread, with vaccination and 
quarantine being two common approaches [18], [19]. A challenging reality is the limited 
number of healthcare workers and facilities, which significantly impacts the pandemic's 
effects. We can create a dynamic system model by looking at these interventions and the 
limits of medical resources. Analyzing this Covid-19 dynamic system can help us 
understand its potential for chaos, what happens during chaos, and how existing 
interventions influence its spread. 

This study will analyze the dynamic system of Covid-19 spread, focusing on vaccination 
and quarantine interventions and the constraints of limited medical resources. We will 
utilize the model developed by Fahreza et al., 2023 [20], which will be reformulated to 
account for these resource limitations. A numerical simulation will then be conducted to 
assess the potential for chaotic behavior in the system, and we will explore the 
consequences of such chaos, as well as methods for controlling it when it occurs. 

 



Chaotic Outbreak in Discrete Epidemic Model with Vaccination........ F.R. Fahreza, M. Hasan, K. A. Santoso 
 
 

24 
 

2. Methods 

The model used in this study will reformulate the existing model in [20], where the Covid-
19 epidemic model with vaccination and quarantine interventions is stated as follows: 
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𝑁 = 𝑆 + 𝑉ଵ + 𝑉ଶ + 𝐼 + 𝑄 + 𝑅 + 𝐷, 

(1)

The compartment 𝑆(𝑡) represents the susceptible population, while 𝑉ଵ(𝑡) and 𝑉ଶ(𝑡) 
indicate those who have received one and two doses of vaccination, respectively. 𝐼(𝑡) 
refers to individuals exposed to the disease with moderate to severe symptoms requiring 
medical intervention, while 𝑄(𝑡) denotes those with mild symptoms manageable through 
self-quarantine. 𝑅(𝑡) signifies the recovered population, and 𝐷(𝑡) represents those who 
have died from the disease. A summary of the parameters is provided in Table 1. 

Table 1. Parameter in Model (1) 

Parameters Descriptions Parameters Descriptions 
λ Infection rate ρ Reinfection rate 

φଵ First dose vaccination 
rate 

𝑝 Reduction in the infection rate due to the first 
dose of vaccination 

φଶ Second dose vaccination 
rate 

𝑟 Reduction in the infection rate due to the 
second dose vaccination 

τଵ The rate of transfer 𝐼(𝑡) 
to 𝑄(𝑡) 

𝑞 Reduction in the infection rate due to 
quarantine 

γ Recovery rate 𝑑 Reduction in disease mortality rates due to 
vaccines 

ζ Disease mortality rate Λ Normal birth rate 
τଶ The rate of transfer 𝑄(𝑡) 

to 𝐼(𝑡) 
μ Normal mortality rate 

Model (1) will be formulated by transforming it into a discrete form and incorporating 
conditions that can illustrate the limitations of medical resources. Next, numerical 
simulations will be conducted to explore the dynamics occurring in the system, such as 
the emergence of bifurcations and chaotic behavior within the system. 
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3. Results 

3.1 Model Formulation 

Model (1), which is a continuous dynamic system, will first be transformed into a discrete 
dynamic system. Look back at Model (1), first we will take one compartment, namely the 
compartment 𝑆(𝑡). Let the number of compartments 𝑆(𝑡) be denoted as 𝑆௧. Based on the 
compartment 𝑆(𝑡), we know that the right-hand side of this compartment indicates 
changes in this compartment, where the changes in the compartment are more clearly 
given every t expressed in days. As a result, the changes occurring in one day (𝑡) in the 
compartment 𝑆(𝑡) can be expressed as follows: 

𝑆௧ାଵ − 𝑆௧ = Λ −
λ𝑆௧𝐼௧

𝑁௧
−

λ𝑞𝑆௧𝑄௧

𝑁௧
− φଵ𝑆௧ + ρ𝑅௧ − μ𝑆௧. 

Thus, for the discrete form of the compartment 𝑆(𝑡), we can write it as follows: 

𝑆௧ାଵ = 𝑆௧ + ൬Λ −
λ𝑆௧𝐼௧

𝑁௧
−

λ𝑞𝑆௧𝑄௧

𝑁௧
− φଵ𝑆௧ + ρ𝑅௧ − μ𝑆௧൰. (2)

This also applies to all compartments in Model (1). 

Model (1) uses the standard incidence rate, suitable for field conditions where population 
density is unaffected by population size. However, this study will employ a framework 
that better represents population density, which is significantly influenced by population 
size. Thus, the incidence rate for this model will be as follows: [21] 

λ𝑆(𝑡)𝐼(𝑡) (3)

Then, by applying the incidence rate of Equation (3) to Model (1), the equation form in 
the compartment 𝑆(𝑡) is obtained as follows: 

𝑑𝑆

𝑑𝑡
= Λ − λ𝑆𝐼 − λ𝑞𝑆𝑄 − φଵ𝑆 + ρ𝑅 − μ𝑆. (4)

This will also be applied to other compartments. 

Next, we will formulate Model (1) to illustrate the limitations of medical resources. This 
model focuses on the population needing additional medical intervention, specifically 
those with moderate to severe symptoms (compartment 𝐼(𝑡)). Key considerations include 
the limited availability of healthcare facilities and personnel, as well as how medical 
interventions can aid recovery. If the number of individuals with moderate to severe 
symptoms exceeds the available medical resources in an area, some may not receive 
necessary care. 

Two conditions will be established for changes in compartment 𝐼(𝑡): when the population 
is below and when it exceeds the medical resource threshold, 𝐼௕. For the condition where 
the infected population is below this threshold, the entire group will receive medical 



Chaotic Outbreak in Discrete Epidemic Model with Vaccination........ F.R. Fahreza, M. Hasan, K. A. Santoso 
 
 

26 
 

intervention. The normal recovery rate without intervention is γ௡, while the recovery rate 
with intervention is γ௠. The changes under these conditions can be summarized as 
follows: 

𝑓(𝐼௧) = (γ௡ + γ௠)𝐼௧. (5)

In the second condition, when the population exceeds local medical resources, only a 
number equal to the threshold can receive treatment. The remaining individuals will 
recover at a standard rate or without intervention. Thus, this scenario can be summarized 
as follows: 

𝑓(𝐼௧) = (γ௡ + γ௠)𝐼௕ + γ௡(𝐼௧ − 𝐼௕). (6)

After formulating the model by adding the previously provided assumptions. What is 
obtained from Equations (2), (4), (5), and (6) will be applied to Model (1). Thus, a discrete 
epidemic model with vaccination and quarantine interventions, as well as limitations on 
medical resources, will be used in this study as shown in the following Equation (7): 

S୲ାଵ  =  S୲  +  Λ − λS୲I୲ − λqS୲Q୲ − φଵ S୲ + ρR୲ − μS୲, 
𝑉ଵ೟శభ

= 𝑉ଵ೟
+ φଵ𝑆௧ − λ𝑝𝑉ଵ೟

𝐼௧ − λ𝑝𝑞𝑉ଵ೟
𝑄௧ − φଶ𝑉ଵ೟

− μ𝑉ଵ೟
, 

𝑉ଶ೟శభ
= 𝑉ଶ೟

+ φଶ𝑉ଵ೟
− λ𝑟𝑉ଶ೟

𝐼௧ − λ𝑟𝑞𝑉ଶ೟
𝑄௧ − μ𝑉ଶ೟

, 

𝐼௧ାଵ = 𝐼௧ + λ𝑆௧𝐼௧ + λ𝑝𝑉ଵ೟
𝐼௧ + λ𝑟𝑉ଶ೟

𝐼௧ + λ𝑞𝑆௧𝑄௧ + λ𝑝𝑞𝑉ଵ೟
𝑄௧ + λ𝑟𝑞𝑉ଶ೟

𝑄௧ − τଵ𝐼௧ + τଶ𝑄௧ − μ𝐼௧ − ζ𝐼௧

− 𝑓(𝐼௧), 
𝑄௧ାଵ = 𝑄௧ + τଵ𝐼௧ − τଶ𝑄௧ − γ௡𝑄௧ − ζ𝑑𝑄௧ − μ𝑄௧, 
𝑅௧ାଵ = 𝑅௧ + γ௡𝑄௧ − ρ𝑅௧ − μ𝑅௧ + 𝑓(𝐼௧), 
𝐷௧ାଵ = 𝐷௧ + ζ𝐼௧ + ζ𝑑𝑄௧, 

(7)

with, 

f(𝐼௧) = ൜
(𝛾௡ + 𝛾௠)𝐼௧, 𝐼௧ ≤ 𝐼௕

(𝛾௡ + 𝛾௠)𝐼௕ +  𝛾௡(𝐼௧ −  𝐼௕), 𝐼௧ >  𝐼௕.
 

3.2 Numerical Simulation 

Numerical simulations are conducted to investigate the system's behavior with an initial 
value and how dynamics change as parameters are varied. First, a simulation will explore 
the periodic solution, which will provide insights into the compartment values over time. 
The parameter values will be defined, and those used for the periodic solution of System 
(7) are presented in Table 2 below: 

Table 2. The values of the parameters 

Parameters Value Parameters Value Parameters Value 
λ 0.5 ρ 0.0065 ζ 0.001 

φଵ 0.2 𝑝 0.590071 τଶ 0.05 
φଶ 0.1 𝑟 0.180143 γ௠ 0.25 
τଵ 0.15 𝑞 0.05 Λ μ𝑁 
γ௡  0.0015 𝑑 0.02 μ 0.3 
𝐼௕ 0.2     

Then the initial values for each compartment are provided in Table 3: 
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Table 3. Initial value of the System (7) compartment 

Compartment Initial Value Compartment Initial Value 
𝑆 0.7 𝑄 0.025 
𝑉ଵ 0.12 𝑅 0.018 
𝑉ଶ 0.08 𝐷 0.007 
𝐼 0.05   

Based on the initial values in Table 3, the total population (𝑁) in this simulation is 
obtained as 𝑁 = 𝑆 + 𝑉ଵ + 𝑉ଶ + 𝐼 + 𝑄 + 𝑅 + 𝐷 = 1. 

Next, the dynamics of the periodic solution of System (7) will be shown in the infected 
compartment (𝐼). 

 

Figure 1. Periodic solution of System (7) a. λ = 0.5 b.λ = 1.1 c.λ =  2.2 

Figure 1a shows the periodic solution of the infected compartment in System (7) with 
parameters from Table 2. Over a 60-day period, the infected population trends toward 
stability in a disease-free state, indicating that the infectious disease could diminish over 
time and not escalate into an epidemic. In contrast, Figure 1b depicts the effect of a higher 
infection rate of (λ =  1.1), resulting in an endemic equilibrium state. This means the 
disease will persist as long as the parameters remain unchanged. Overall, these two 
periodic solutions highlight how the infection rate can shift the system's behavior from 
stability to a disease-free condition and ultimately to an endemic state. 

Upon examining Figure 1b, it is evident that the increase in infection cases has not yet 
surpassed the medical resources threshold (𝐼௕ = 0.2). A simulation will be conducted by 
increasing the infection rate to see if the dynamics can exceed this threshold. Figure 1c 
depicts the periodic solution of compartment 𝐼 at an infection rate of λ =  2.2, showcasing 
a scenario where the infectious disease spreads beyond medical resource capacity. While 
a surge in cases occurs, it can still be suppressed, allowing compartment 𝐼 to stabilize. 
The stable point identified in Simulation 𝐼 remains above the threshold (𝐼௕), prompting 
further exploration of how changes in the infection rate (λ) affect the system's stability 
conditions. 

The change in the infection rate with respect to stability will be presented using a 
bifurcation diagram. First, the bifurcation diagram of the system between λ and 𝐼 will be 
presented if the parameter values are given as in Table 2. 
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Figure 2. Bifurcation diagram of System (7) 

Figure 2 illustrates how the dynamics of compartment 𝐼 relate to the value of λ. Limited 
medical resources increase the rate of case growth, as shown by λ’s trend pushing 
equilibrium 𝐼 toward the threshold. Despite reaching a higher equilibrium point, the stable 
condition indicates that this phenomenon remains manageable. Next, we will investigate 
how changing the threshold value 𝐼௕ affects the system's dynamics. 

The threshold value for medical resources, (𝐼௕), will be modified in the next simulation. 
Currently, 𝐼௕ = 0.2 indicates that resources can handle only 20% of the population. The 
goal is to increase this threshold until it can support 50% of the total population. 

 

Figure 3. Bifurcation diagram of System (7) a. 𝐼௕ = 0.5 b. 𝐼௕ = 0.1 

Figure 3a illustrates the dynamics of I against λ when medical resources can aid the 
recovery of up to 50% of the population. Compartment 𝐼 does not reach the threshold, 
showing a flattening trend, suggesting that the spread of infectious diseases is likely 
controllable. 

We examine the decrease in the threshold of medical resources that can accommodate 
only 10% of the total population. Figure 3b illustrates the dynamics of 𝐼 in relation to λ 
when𝐼௕ = 0.1. When 𝐼 exceeds the threshold, a backward bifurcation occurs, 
complicating control as the number of infected individuals surges. The next section will 
describe how the system's periodic solution behaves as λ approaches the threshold. 
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Figure 4. Periodic solution of system (7) when 𝐼௕ = 0.1 

Figure 4 illustrates that the system can face a significant surge in infection cases due to 
limited medical resources. This scarcity, combined with a sudden spike in cases, 
complicates efforts to achieve a disease-free state. The variations in the 𝐼௕ values suggest 
that the availability of medical resources is essential for managing infectious diseases. 
Additionally, System (7) considers the effects of vaccination and quarantine 
interventions, prompting the next step to explore how these measures impact the system, 
particularly given that its medical capacity can only support 10% of the population. 

Exploration will be conducted by reviewing the bifurcation diagram of compartment 𝐼 
with respect to several parameters related to vaccination and quarantine interventions. 
Assume System (7) has λ = 1.1, resulting in the following bifurcation diagram: 

 

Figure 5. Bifurcation diagram between 𝐼 and a. 𝑝 b. 𝑞 c. φଵ 

Figures 5a and 5b illustrate how the dynamics of 𝐼 relate to the parameters 𝑝, representing 
vaccine efficacy, and 𝑞, indicating the proportion of individuals adhering to quarantine 
measures [20]. Increasing these parameters can reduce the equilibrium level of 𝐼, but 
efforts related to 𝑞 have not yet brought the system below the 𝐼௕ threshold. This suggests 
that improving vaccine efficacy can help manage a population that medical resources can 
only support up to 10%. Additionally, quarantine measures have proven inadequate in 
lowering the system’s conditions beneath the threshold. Notably, Figures 5a and 5b 
assume λ =  1.1, while those in Figure 3b remain just above the threshold. 

If λ is significantly above the threshold, such as λ =  1.5, the intervention parameter to 
consider is φଵ, or the vaccination rate. Figure 5c illustrates that increasing this rate can 
bring the system's equilibrium below the threshold𝐼௕. Despite the challenges of disease 
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spread, vaccination interventions can still be effective, though the size of the infected 
population must be considered. In certain situations, boosting vaccine efficacy or 
accelerating vaccine administration may be necessary when it can no longer contain 
compartment 𝐼. 

After exploring with 𝐼௕, we will return to explore System (7) by increasing the value of λ 
or the infection rate. The threshold value of 𝐼௕ will again use the assumption that medical 
resources are available for 20% of the population. 

 

Figure 6. Periodic solution of System (7) a.λ = 3.8 b.λ = 4.2 c.λ = 4.6 

The value of λ is first increased to 3.8, as shown in Figure 6a, where the periodic solution 
indicates that 𝐼 stabilizes towards two equilibrium points or undergoes period-doubling. 
When λ rises to 4.2, Figure 6b reveals that System (7) stabilizes towards four equilibrium 
points, again demonstrating period-doubling. This phenomenon is a pathway to chaos. 
Figure 6c illustrates the system's attraction to multiple attractors, a behavior characteristic 
of chaotic conditions. Thus, the potential for chaos in System (7) will be further 
investigated. 

The chaotic behavior in the system can be investigated using the Period-Doubling 
bifurcation diagram up to the Maximum Lyapunov Exponent. Figure 6 has shown the 
presence of period-doubling behavior in the system, with the continuous increase of the 
value of λ, the Period-Doubling bifurcation diagram is obtained as follows: 

 

Figure 7. a. Bifurcation diagram of System (7) b.Maximum Lyapunov Exponent of System (7) 

Figure 7a shows that as λ increases, period-doubling continues, leading to multiple 
attractors and the potential for chaotic behavior. Maximum Lyapunov Exponent (MLE) 
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analysis further confirms this chaos. Figure 7b illustrates the MLE values at each λ; 
positive MLE indicates chaos, while an MLE of 0 points to bifurcation. It is clear from 
the data that the system has many attractors with positive MLE values, confirming that 
System (7) exhibits chaotic behavior in this region. 

Chaotic behavior in the system can also be demonstrated by its sensitivity to initial values. 
The periodic solution of System (7) that exhibits chaos will be presented if a perturbation 
of 10ିସ is applied to its initial value (Table 3). 

 

Figure 8. Periodic solution of System (7) during chaos 

Figure 8 shows the periodic solution of the system for two λ values that are similarly 
sensitive to initial conditions. The chaotic behavior in the disease spread model indicates 
a highly uncontrollable phenomenon. Daily fluctuations in the infected population hinder 
predictions about when disease transmission will peak or end. Another chaotic scenario 
will be presented, focusing on cases where medical resources can manage only 10% of 
the population. 

 

Figure 9. a. Bifurcation diagram dan b. Maximum Lyapunov Exponent System at 𝐼௕ = 0.1 

Figure 9 shows that bifurcation at low medical resource thresholds can lead to chaos. 
Simulations indicate that exceeding these thresholds may result in chaotic behavior. 
Therefore, proactive measures to control the infection rate are essential to prevent a 
chaotic outbreak. 

Chaotic behavior in the phase diagram leads to a limit cycle, or Neimark-Sacker 
bifurcation. A simulation shows changes as λ varies, using parameters from Table 2, with 
vaccine infection rates φଵ = 1.1 and φଶ = 1.3, and a medical resource threshold of 50%. 
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Figure 10. Phase diagram System (7) 

Figure 10 shows that as λ increases, the system maintains a close invariant, indicating a 
Neimark-Sacker bifurcation. During this close invariant behavior, periodic solutions 
emerge, characterized by a repeating pattern. 

 

Figure 11. Periodic solution of system (7) a.λ = 2.55 b.λ = 2.99 c.λ = 3.13 

Figure 11a depicts the system's solution during period doubling. When a close invariant 
(λ = 2.99) is present, the periodic solution establishes a repeating pattern, as seen in 
Figure 11b. Additionally, the figure illustrates the system's response to perturbations, 
indicating that the system within a closed invariant is not sensitive to initial value 
variations. 

Figure 11c shows the deviation of the periodic solution when the system is operational, 
highlighting its sensitivity to initial conditions. Consequently, the system exhibits chaotic 



Chaotic Outbreak in Discrete Epidemic Model with Vaccination........ F.R. Fahreza, M. Hasan, K. A. Santoso 
 
 

33 
 

behavior, despite maintaining a recognizable pattern for a time. 

 

Figure 12. a.Bifurcation diagram b.Maximum Lyapunov Exponent at φଵ = 1.1, φଶ = 1.3, and 
𝐼௕ = 0.5 

Figure 12 illustrates that a system undergoing a Neimark-Sacker bifurcation can also 
display chaotic behavior 

4. Results 

The model of infectious disease spread, which includes vaccination and quarantine 
interventions alongside limited medical resources, demonstrates a dynamic system that 
can lead to chaotic outbreaks. Vaccination strategies can mitigate the impact of medical 
resource constraints by improving vaccine efficacy and administration rates. 
Additionally, controlling chaotic phenomena involves regulating infection rates within 
the population. Essentially, direct intervention in transmission rates is a key method for 
managing chaotic outbreaks. The general solution approach of linear parameter equation 
constraints shows that the explicit constrained mixed linear model is equivalent to the 
implicit constrained mixed linear model. 
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